T©RGUN

Design challenges of offshore wind support structures

PIANC 5th YP-COM BTV Ostend, 7 May 2015 Nathalie Gunst

CONTENTS

Synergies and discrepancies in design methodology between:

- WTG support structures; and
- Substation support structures (HVAC)

Source: C-Power

PIANC 5th YP-COM BTV

SUPPORT STRUCTURE CONCEPTS

Limited to concepts applicable for WTG and substations

TORGUN

	WTG	SUBSTATIONS
Gravity base foundation	\checkmark	\checkmark
	commonly used in shallow waters (semi) self-floating in deeper waters e.g. C-Power	Relatively few – shallow waters e.g. Lillgrund (120 MVA, 670 MT) Anholt (1,710MT)
Monopile + Transition Piece	Vide-spread use	Limited topside weight
4-legged jacket structures	\checkmark	\checkmark
	Pre-piling	Most commonly post-piled Pre-piling in some cases 4+ legged jackets

7 May 2015

MONOPILE SOLUTIONS for WTG

T©RGUN

PIANC 5th YP-COM BTV

MONOPILE SOLUTIONS for substations

Source: Northwind (216 MW - 1,200 MT)

PIANC 5th YP-COM BTV

7 May 2015

MONOPILE SOLUTIONS WTG vs Substations

- ~ Synergies:
 - ~ equal TP outer diameter
 - boat landing design
 - ~ access ladders & fall arrest
 - ~ painting systems
 - ~ scour protection
- ~ Differences

TORGUN

- ~ cross-box girders
- ~ I/J-tube cage
- ~ larger MP diameter
- ~ may need tuned mass damper

Source: Deme (London Array – 630 MW – 1,260 MT)

JACKET SOLUTIONS for WTG

Pre-piling operation

PIANC 5th YP-COM BTV

JACKET SOLUTIONS for WTG - clustering

7 May 2015

JACKET SOLUTIONS for substations

Post-piled jacket

Source: 4Cofffshore (Innogy Nordsee 1 – 332 MW – 1900 MT)

Pre-piled jacket

Source: OWEC (C-Power - 325 MW - 2,000 MT)

Source: Deme (Butendiek – 288 MW)

PIANC 5th YP-COM BTV

7 May 2015

JACKET SOLUTIONS WTG vs Substations

- ~ Synergies (if pre-piled):
 - ~ equal footprint
 - ~ jacket-pile connection
 - ~ access ladders & fall arrest
 - ~ corrosion protection system
- ~ Differences:
 - topside-jacket connection (no midsection)
 - jacket sizing (more flexibility when post-piled)
 - access platform (cable deck in case)

Source: C-Power

TORGUN PIANC 5th YP-COM BTV

DESIGN PROCESS

TORGUN

Statement of compliance

PIANC 5th YP-COM BTV

STANDARDS & GUIDELINES

	WTG	Substation		
Design	IEC 61400-3 DNV-OS-J101 (2014) – Design of offshore wind turbine structures GL Guideline for the Certification of OW turbines (2012)	DNV-OS-J201 (2014) – Offshore substations for wind farms DNV-OS-C101 (2014) – Design of offshore steel structures DNV-OS-C502 (2012) – Offshore concrete structures		
	DNVGL-RP-0005 (2014) – Fatigue design of offshore steel structures DNV-RP-B401 (2011) – Cathodic protection design ISO 19902 – Petroleum and natural gas industries – Fixed steel offshore structures			
Fabrication	DNV-OS-C401 (2014) – Fabrication and Testing of offshore structures EN 1090 – Execution of steel and aluminium structures			
Transport and installation	Noble Denton Rules marine assurance and advisory rules and guidelines DNV-OS-H10x series – Marine operations DNV-OS-H20x series – Load Transer Operations			

Limited to governing standards - other standards are referred to within standards listed above

TORGUN

PIANC 5th YP-COM BTV

BASIC ASSUMPTIONS

	WTG	Substations
Safety class	Normal	High
Manning philosophy	Unmanned	Normally manned / Semi-manned / <u>Normally unmanned</u> (Type A)
Service Life	usually 20 yrs	same as for WTG or higher
Return period of extreme event	50 yrs	100 yrs

Remark: also stricter requirements for air gap and ALS design

T©RGUN

PIANC 5th YP-COM BTV

LOAD AND RESISTANCE FACTORS

Following DNV-OS-J101 resp. DNV-OS-J201

Set	Limit state	WTG			Substations				
		G	Q	E	D	G	Q	E	D
(a)	ULS	1.25	1.25	0.7(*)	1.0	1.3(**)	1.3(**)	0.7	1.0
(b)	ULS	ψ	ψ	1.35	1.0	Ψ	ψ	1.3	1.0
(c)	ULS abnormal wind	ψ	ψ	1.1	1.0		NA		

(*) 1.0 to be used in combination with ship impact loads (**) 1.2 may be used in cases the load is well defined For FLS, SLS and ALS γ_f is 1.0

Material parameter - ULS	WTG	Substations
Steel strength	1.10 / 1.20	1.15 / 1.45
Angle of internal friction	1.15	1.2
Undrained shear strength	1.25	1.3
Axial load-carrying capacity	1.25	1.7

DESIGN FATIGUE FACTORS

Following DNV-OS-J101 resp. DNV-OS-J201

T©RGUN

Zone	Accessibility for inspection and repair	SN - curve	DFF for WTG	DFF for OHVS
Atmospheric	Yes / No	Air – for coated surfaces Free – for CA only	2.0	2.0
Splash	Yes	Air (+ Free)	2.0	3.3
	No		3.0	10.0
Submerged	Yes	Seawater – where CP Free – for CA only	2.0	3.3
	No		3.0	10.0
Scour	No		3.0	10.0
Burried	No	Seawater	3.0	10.0

CORROSION PROTECTION

Legend: CA = Corrosion Allowance; CP = Cathodic Protection; *Optional*

Zone	Internal (MP/TP)	External
Atmospheric zone	Coating + CA	Coating + CA
Splash zone – above MSL	Coating + CA	Coating + CA
Splash zone – below MSL	Coating (+ CP) + CA	Coating (+ CP) + CA
Submerged zone	Coating and/or CP	Coating and/or CP
Burried MIC zone	Coating and/or CP + CA	Coating and/or CP + CA
Burried zone – below MIC	-	-

Remarks:

- ~ Applicable SN-curves to be defined ifo air/water and design life/coating life
- ~ Specific corrosion rates may be applied for upper, middle and lower splash zone.
- ~ In case of internal cathodic protection water and air refreshment shall be facilitated.
- ~ Metallized coating is recommended in MIC zone, flanges, etc to protect from damage.
- ~ Higher resistant coating or allowance usually applied on boat landing bumpers.

T
 RGUN

DESIGN DRIVERS for Substations

- ~ Stabbing point geometry
- ~ Topside weight and envelope of CoG
- ~ Topside box dimensions
- ~ Environmental (wind) loading
- ~ GIS level
- ~ Platform levels
- ~ Limiting accelerations

T©RGUN

EIGEN FREQUENCY

- WTG natural frequency within the permitted soft-stiff range between 1P and 3P
- WTG jacket support structures are more stiff and benefit from frequency relaxation in the stiff of the permitted range
- Substation support structures are designed in the stiff end
 TORGUN

Source: Blevins

ACCELERATIONS

Source: Irwin, A. W. (1984) Design of Shear Wall Buildings. CIRIA – Construction. Industry Research and Information Association, 1984

 check of rms accelerations for human comfort at different platform levels (e.g. utility structure – trained personnel)

 check of peak accelerations at elevation of sensible equipment (e.g. max 0.2g at GIS elevation)

CONCLUSION

- The WTG and OHVS support structure design require a specific design approach, but many synergies are possible throughout the design, fabrication and installation process.
- OHVS support structure design is mainly ULS driven, whereas WTG support structures are ULS + FLS driven
- Due to the specific design approach, a dedicated lead for the design of the OHVS support structure is recommended but there is benefit in sharing crosscompetences within the team.

T[©]RGUN

THANKS FOR YOUR ATTENTION

TORGUN

~ TORGUN BVBA

- Urselweg 6A
 B-9880 Aalter
 BELGIUM
- Nathalie Gunst
 M. Eng., M. Sc.
 Managing Director
 M: +32 473 945714
- ~ <u>www.torgun.com</u> info@torgun.com